Antisense RNA-based High-Throughput Screen System for Directed Evolution of Quorum Quenching Enzymes.
نویسندگان
چکیده
Quorum quenching (QQ) enzymes, which disrupt the quorum sensing signaling process, have attracted considerable attention as new antimicrobial agents. However, their low catalytic efficiency for quorum sensing molecules remains a challenge. Herein, we present an antisense RNA-based high-throughput screen system for directed evolution of a quorum quenching enzyme. The screening system was constructed by incorporating an antisense RNA (RyhB) into a synthetic module to quantitatively regulate the expression of a reporter gene fused with a sense RNA (sodB). To control the expression of a reporter gene in response to the catalytic activity of a quorum quenching enzyme, the region of interaction and mode between a pair of antisense (RyhB) and sense (sodB) RNAs was designed and optimized through the prediction of the secondary structure of the RNA pair. The screening system constructed was shown to lead to a significant reduction in the false-positive rate (average 42%) in the screening of N-acyl-homoserine lactonase (AiiA) with increased catalytic activity, resulting in a true-positive frequency of up to 76%. The utility and efficiency of the screening system were demonstrated by selecting an AiiA with 31-fold higher catalytic efficiency than the wild-type in three rounds of directed evolution. The present approach can be widely used for the screening of quorum quenching enzymes with the desired catalytic property, as well as for a synthetic network for a stringent regulation of the gene expression.
منابع مشابه
A genetic circuit system based on quorum sensing signaling for directed evolution of quorum-quenching enzymes.
Quorum sensing is a cell-cell communication mechanism that is involved in the regulation of biological functions such as luminescence, virulence, and biofilm formation. Quorum-quenching enzymes, which interrupt quorum-sensing signaling through degradation of quorum-sensing molecules, have emerged as a new approach to controlling and preventing bacterial virulence and pathogenesis. In an effort ...
متن کاملEffects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli
Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...
متن کاملQuorum quenching for the management of dental plaque microbes
In the present study, variation among different bacterial strains was observed in the plaques of tobacco chewers (TC) as compared to those from normal persons (non tobacco chewers) (NTC). Bacterial strain J1 (dominant in the plaques of NTC) did not initiate the process of adhesion (biofilm formation) until it appeared to have reached a required population density necessary for the production of...
متن کاملEvolution of Resistance to Quorum Quenching in Digital Organisms
Quorum sensing (QS) is a collective behavior whereby actions of individuals depend on the density of the surrounding population. Bacteria use QS to trigger secretion of digestive enzymes, formation and destruction of biofilms, and, in the case of pathogenic organisms, expression of virulence factors that cause disease. Investigations of mechanisms that prevent or disrupt QS, referred to as quor...
متن کاملQuorum Quenching Enzymes and Their Application in Degrading Signal Molecules to Block Quorum Sensing-Dependent Infection
With the emergence of antibiotic-resistant strains of bacteria, the available options for treating bacterial infections have become very limited, and the search for a novel general antibacterial therapy has received much greater attention. Quorum quenching can be used to control disease in a quorum sensing system by triggering the pathogenic phenotype. The interference with the quorum sensing s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS chemical biology
دوره 10 11 شماره
صفحات -
تاریخ انتشار 2015